Complexes of Facultative Hexadentate Ligands. Structure of 7,7'-(Ethylenediiminodiethylenedinitrilo)bis(7-methyl-o-cresolato$\left.O, N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}, O^{\prime}\right)$ cobalt(III) Hexafluorophosphate-Acetone (1/1)*

By Hilary J. Banbery and Thomas A. Hamor
Department of Chemistry, University of Birmingham, Birmingham B15 2TT, England

(Received 5 June 1989; accepted 10 July 1989)

Abstract

Co}\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right]\left[\mathrm{PF}_{6}\right] . \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, \quad M_{r}=\) 642.5, monoclinic, $P 2_{1} / n, \quad a=14.082$ (2), $\quad b=$ 13.448 (1), $c=15.016$ (1) $\AA, \beta=101.81$ (1) ${ }^{\circ}, \quad V=$ $2783.5 \AA^{3}, Z=4, \quad D_{x}=1.533 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \alpha)=$ $0.71069 \AA, \quad \mu=7.70 \mathrm{~cm}^{-1}, \quad F(000)=1328, \quad T=$ $293 \mathrm{~K}, R=0.069$ for 3426 observed reflections. The coordination around Co is approximately octahedral with $\mathrm{Co}-\mathrm{N}$ (amine) 1.953 (5) and 1.966 (5) \AA, Co-N(imine) both $1.915(5) \AA$, and $\mathrm{Co}-\mathrm{O}$ 1.875 (4) and 1.869 (4) \AA. No angle at Co differs by more than 7° from either 90 or 180°.

Introduction. Facultative hexadentate ligands capable of octahedral coordination to a transition-metal ion may encapsulate it in a $1: 1$ complex whose exterior exhibits the properties of an organic material. Such species are of interest in a variety of contexts, particularly in the production of metal-containing pharmaceuticals. The molecular structures of a nickel(II) (Cradwick, Cradwick, Dodson, Hall \& Waters, 1972) and an iron(III) complex (Sinn, Sim, Dose, Tweedle \& Wilson, 1978) with a hexadentate salicylaldehyde ligand have been determined, thereby confirming the ability of such a ligand to reach all octahedral sites on a transition-metal ion.
As part of an investigation into complexes of lipophilic ligands capable of encapsulating metal ions, the structure of the cobalt(III) complex with a similar hexadentate Schiff base ligand, $7,7^{\prime}$-(ethylenediiminodiethylenedinitrilo)bis(7 -methyl-o-cresol) [$(\mathrm{Hmoc})_{2}$ trien], has been elucidated. The preparation of the complex is described by Rothin, Banbery, Berry, Hamor, Jones \& McCleverty (1989).

Experimental. A crystal of $\left[\mathrm{Co}\left\{(\mathrm{moc})_{2}\right.\right.$ trien $\left.\}\right]$ $\mathrm{PF}_{6} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ with dimensions $0.4 \times 0.6 \times 0.4 \mathrm{~mm}$ was used. Measurements were made on an EnrafNonius CAD-4 diffractometer. Lattice parameters were determined from the setting angles of 25 reflections ($\theta 18$ to 24°). Intensity data were measured with $\omega-2 \theta$ scans in the range $2<\theta<24^{\circ}$, index

[^0]range $h-16$ to $16, k-16$ to $16, l 0$ to 17 . Three standard reflections, measured every 2 h , showed no significant variation over the period of data collection. 9050 reflections were scanned, of which 4344 were unique ($R_{\text {int }}=0.0192$) and 3426 were considered observed $[F>5 \sigma(F)]$ and were used in the analysis. No absorption correction was applied.
The structure was solved using Patterson and Fourier methods. H atoms were placed in calculated positions, riding on their bonded atoms. Coordinates for all non-H atoms were refined using full-matrix least squares on F values with weights $w=1 /\left[\sigma^{2}(F)\right.$ $+0.00035 F^{2}$]. The heavier atoms were assigned anisotropic thermal parameters, and the H atoms of the cation and of the acetone molecule were each assigned one overall isotropic temperature factor which refined to $0.085(5)$ and $0.250(34) \AA^{2}$, respectively. The F atoms of the hexafluorophosphate anion were refined isotropically. The refinement was terminated when all shifts were less than half their respective e.s.d.'s, and $R=0.069, w R=0.096$, for the 3426 observed reflections. The residual electron density in a final difference synthesis was within +0.9 to $-0.9 \mathrm{e} \AA^{-3}$.
Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974); computations were carried out with SHELX76 (Sheldrick, 1976) and PLUTO78 (Motherwell \& Clegg, 1978).

Discussion. Atomic coordinates are listed in Table $1, \dagger$ and bond lengths and angles in Table 2. Fig. 1 shows the atomic numbering for the complex. The asymmetric unit consists of a monomeric cobalt(III) cationic complex, a hexafluorophosphate anion and a molecule of acetone. The Schiff base ligand is bonded through all six donor atoms (ONNNNO) to

[^1]Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ with e.s.d.'s in parentheses and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$
$U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	\boldsymbol{x}	y	z	$U_{\text {eq }}$
$\mathrm{Co}(1)$	4267 (1)	568 (1)	2391 (1)	32
$\mathrm{N}(1)$	5263 (3)	1558 (3)	2645 (3)	36
$\mathrm{N}(2)$	5076 (4)	- 149 (4)	3400 (3)	38
N(3)	4880 (4)	-256 (4)	1584 (4)	48
N(4)	3261 (4)	-414 (3)	2157 (3)	40
O(1)	3532 (3)	1260 (3)	1402 (3)	43
$\mathrm{O}(2)$	3653 (3)	1308 (3)	3164 (3)	37
C(1)	3921 (4)	1881 (4)	897 (4)	37
C(2)	3387 (5)	2063 (5)	7 (4)	48
C(3)	3733 (6)	2708 (5)	-569 (4)	53
C(4)	4604 (5)	3179 (5)	-292 (5)	55
C(5)	5126 (5)	3030 (5)	568 (5)	51
C(6)	4809 (4)	2393 (4)	1202 (4)	38
C(7)	5388 (4)	2292 (4)	2120 (4)	38
C(8)	6142 (6)	3085 (5)	2475 (5)	64
C(9)	5874 (5)	1457 (5)	3565 (4)	48
C(10)	5510 (5)	619 (5)	4075 (4)	42
C(11)	5840 (5)	-718(5)	3064 (5)	56
C(12)	5415 (6)	- 1094 (5)	2134 (5)	63
C(13)	4075 (6)	-641 (5)	871 (5)	59
C (14)	3249 (6)	-958 (5)	1287 (5)	56
C(15)	2600 (5)	-566 (4)	2634 (4)	41
C(16)	1802 (6)	-1305 (6)	2317 (6)	70
C(17)	2595 (4)	-5 (4)	3466 (4)	37
C(18)	2021 (5)	-333(5)	4085 (5)	51
C(19)	1911 (5)	217 (6)	4822 (5)	57
C(20)	2362 (5)	1133 (5)	4983 (5)	49
C(21)	2947 (4)	1469 (4)	4418 (4)	39
C(22)	3084 (4)	915 (4)	3654 (4)	30
$\mathrm{P}(1)$	7992 (1)	882 (1)	1603 (1)	54
$\mathrm{O}(14)$	581 (5)	2954 (4)	872 (5)	96
$\mathrm{C}(1 A)$	714 (5)	2063 (6)	950 (6)	64
$\mathrm{C}(2 A)$	1202 (8)	1620 (9)	1838 (8)	116
$\mathrm{C}(3 A)$	394 (10)	1396 (8)	160 (8)	120
$\mathrm{F}(1)^{*}$	9051 (7)	408 (8)	1880 (7)	$\ddagger 103$ (3)
F(2)*	6848 (7)	1018 (8)	1303 (7)	$\ddagger 109$ (3)
F(3)*	7930 (7)	413 (8)	2554 (7)	$\ddagger 109$ (3)
F(4)*	8088 (9)	1945 (9)	2083 (9)	$\ddagger 138$ (5)
F(5)*	7851 (8)	-125 (8)	1097 (8)	$\ddagger 119$ (3)
$\mathrm{F}(6){ }^{\text {* }}$	8125 (8)	1413 (8)	706 (7)	$\ddagger 123$ (3)
F(11) \dagger	9052 (18)	1024 (22)	2048 (18)	$\ddagger 139$ (8)
F(12) \dagger	7112 (13)	1467 (14)	983 (13)	$\ddagger 101$ (5)
F(13) \dagger	7603 (15)	1113 (17)	2516 (14)	$\ddagger 121$ (6)
$\mathrm{F}(14) \dagger$	8607 (15)	1870 (15)	1773 (13)	$\ddagger 106$ (6)
F(15) \dagger	7449 (14)	-187 (14)	1609 (14)	$\ddagger 111$ (6)
F(16) \dagger	8180 (17)	491 (18)	647 (16)	$\ddagger 136$ (7)

> * Site occupancy $0.65(1)$. \dagger Site occupancy $0.34(1)$. $\ddagger U_{\text {iso. }}$.
the metal, which exhibits a slightly distorted octahedral geometry. Both O atoms are trans to amine N atoms, while the two imine N atoms, $\mathrm{N}(1)$ and $\mathrm{N}(4)$, are mutually trans.
The coordination of all six donor atoms results in encapsulation of the metal atom by the ligand, producing three five-membered and two six-membered chelate rings.

The maximum angular distortions from ideal octahedral geometry involve the angles subtended at the metal atom by adjacent amine and imine N atoms, which differ from 90° by $6.8(2)^{\circ}$ for $\mathrm{N}(1)$ -$\mathrm{Co}-\mathrm{N}(3)$, and by $5.7(2)^{\circ}$ for $\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(4)$. There are two sets of $\mathrm{Co}-\mathrm{N}$ bond lengths, corresponding to the two types of N atom present in the complex. The $\mathrm{Co}-\mathrm{N}$ (amine) bonds are the longest, with values of 1.953 (5) and 1.966 (5) \AA for $N(2)$ and

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Co}(1)-\mathrm{N}(1)$	$1.915(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.367(10)$
$\mathrm{Co}(1)-\mathrm{N}(2)$	$1.953(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.365(10)$
$\mathrm{Co}(1)-\mathrm{N}(3)$	$1.966(5)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.418(8)$
$\mathrm{Co}(1)-\mathrm{N}(4)$	$1.915(5)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.457(9)$
$\mathrm{Co}(1)-\mathrm{O}(1)$	$1.875(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.523(8)$
$\mathrm{Co}(1)-\mathrm{O}(2)$	$1.869(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.510(9)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.298(7)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.490(10)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.476(8)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.491(10)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.489(7)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.503(9)$
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.489(8)$	$\mathrm{C}(15)-\mathrm{C}(17)$	$1.460(8)$
$\mathrm{N}(3)-\mathrm{C}(12)$	$1.506(9)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.422(9)$
$\mathrm{N}(3)-\mathrm{C}(13)$	$1.484(9)$	$\mathrm{C}(17)-\mathrm{C}(22)$	$1.417(8)$
$\mathrm{N}(4)-\mathrm{C}(14)$	$1.494(8)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.366(10)$
$\mathrm{N}(4)-\mathrm{C}(15)$	$1.302(8)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.384(10)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.320(7)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.375(9)$
$\mathrm{O}(2)-\mathrm{C}(22)$	$1.306(6)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.414(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.414(8)$	$\mathrm{O}(1 A)-\mathrm{C}(1 A)$	$1.215(9)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.419(8)$	$\mathrm{C}(1 A)-\mathrm{C}(2 A)$	$1.494(13)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.382(9)$	$\mathrm{C}(1 A)-\mathrm{C}(3 A)$	$1.482(13)$

Range of $\mathrm{P}-\mathrm{F}$ bond lengths
Major orientation 1.547 (11) to $1.596(10)$
Minor orientation 1.517 (25) to $1.630(20)$

$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(2)$	84.4 (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.7 (6)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(3)$	96.8 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.7 (6)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(3)$	86.5 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$122 \cdot 8$ (6)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(4)$	178.9 (2)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	117.0 (6)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(4)$	95.4 (2)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	123.0 (5)
$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{N}(4)$	84.3 (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.0 (6)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(1)$	94.3 (2)	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	121.8 (5)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(1)$	177.8 (2)	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	119.4 (6)
$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{O}(1)$	91.8 (2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	118.8 (5)
$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{O}(1)$	85.9 (2)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	110.5 (5)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(2)$	85.4 (2)	$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	107.9 (5)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(2)$	93.0 (2)	$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	108.2 (6)
$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{O}(2)$	$177 \cdot 7$ (2)	$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	108.6 (5)
$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{O}(2)$	93.6 (2)	$\mathrm{N}(3)-\mathrm{C}(13)-\mathrm{C}(14)$	$110 \cdot 1$ (5)
$\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(2)$	88.7 (2)	$\mathrm{N}(4)-\mathrm{C}(14)-\mathrm{C}(13)$	$110 \cdot 8$ (5)
$\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	126.3 (4)	$\mathrm{N}(4)-\mathrm{C}(15)-\mathrm{C}(16)$	$120 \cdot 2$ (6)
$\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{C}(9)$	112.7 (4)	$\mathrm{N}(4)-\mathrm{C}(15)-\mathrm{C}(17)$	121.2 (5)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(9)$	120.9 (5)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(17)$	118.5 (6)
$\mathrm{Co}(1)-\mathrm{N}(2)-\mathrm{C}(10)$	$106 \cdot 1$ (3)	$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{C}(18)$	$120 \cdot 2$ (5)
$\mathrm{Co}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	$109 \cdot 8$ (4)	$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{C}(22)$	122.3 (5)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(11)$	$111 \cdot 3$ (5)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	117.3 (6)
$\mathrm{Co}(1)-\mathrm{N}(3)-\mathrm{C}(12)$	108.5 (4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	122.4 (6)
$\mathrm{Co}(1)-\mathrm{N}(3)-\mathrm{C}(13)$	$105 \cdot 9$ (4)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	120.0 (6)
$\mathrm{C}(12)-\mathrm{N}(3)-\mathrm{C}(13)$	110.9 (5)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	119.7 (6)
$\mathrm{Co}(1)-\mathrm{N}(4)-\mathrm{C}(14)$	112.0 (4)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	121.7 (6)
$\mathrm{Co}(1)-\mathrm{N}(4)-\mathrm{C}(15)$	126.3 (4)	$\mathrm{O}(2)-\mathrm{C}(22)-\mathrm{C}(17)$	124.7 (5)
$\mathrm{C}(14)-\mathrm{N}(4)-\mathrm{C}(15)$	121.5 (5)	$\mathrm{O}(2)-\mathrm{C}(22)-\mathrm{C}(21)$	116.5 (5)
$\mathrm{Co}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	122.8 (4)	$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	118.8 (5)
$\mathrm{Co}(1)-\mathrm{O}(2)-\mathrm{C}(22)$	$123 \cdot 3$ (3)	$\mathrm{O}(1 A)-\mathrm{C}(1 A)-\mathrm{C}(2 A)$	120.9 (9)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	116.7 (5)	$\mathrm{O}(1 A)-\mathrm{C}(1 A)-\mathrm{C}(3 A)$	$120 \cdot 3$ (9)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$124 \cdot 3$ (5)	$\mathrm{C}(2 A)-\mathrm{C}(1 A)-\mathrm{C}(3 A)$	118.8 (9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	118.9 (6)		
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.8 (7)		

Fig. 1. Stereoscopic view of the cationic complex showing the atom numbering.
$\mathrm{N}(3)$, respectively. The $\mathrm{Co}-\mathrm{N}$ (imine) bond lengths are both 1.915 (5) \AA. The $\mathrm{Co}-\mathrm{O}$ bond lengths are 1.875 (4) and 1.869 (4) \AA.

The structure may be compared to the structures of $\mathrm{Fe}^{\mathrm{III}}$ and $\mathrm{Ni}^{\mathrm{II}}$ complexes containing the corresponding $\mathrm{H}(\text { sal })_{2}$ trien ligand $\quad(\mathrm{sal}=$ salicylidene $)$: $\left[\mathrm{Fe}(\mathrm{sal})_{2}\right.$ trien $] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}(\mathrm{sal})_{2}\right.$ trien $] \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}$ (Sinn
et al., 1978) and $\left[\mathrm{Ni}(\mathrm{sal})_{2}\right.$ trien]. $6 \mathrm{H}_{2} \mathrm{O}$ (Cradwick et al., 1972). All the complexes have the same configuration of the hexadentate ligand, with the terminal O atoms mutually cis. The deviation from perfect octahedral geometry for the $\mathrm{CoN}_{4} \mathrm{O}_{2}$ unit, maximum angular distortion 6.8°, is comparable to that of the related iron complexes, which show maximum deviations of 6.5 and 6.2°. The $\mathrm{NiN}_{4} \mathrm{O}_{2}$ unit exhibits a much greater deviation, $15 \cdot 6^{\circ}$. The metalligand distances for the $\mathrm{Co}^{\text {III }}$ complex are somewhat shorter than those of the $\mathrm{Fe}^{\text {III }}$ compounds, where Fe is in the low-spin state; mean $\mathrm{Fe}-\mathrm{O} 1.883, \mathrm{Fe}-$ N (imine) 1.931 and $\mathrm{Fe}-\mathrm{N}($ amine $) 2.003 \AA$. However, the metal-ligand distances in the Ni^{11} complex are much longer: $\mathrm{Ni}-\mathrm{O} 2.058, \mathrm{Ni}-\mathrm{N}$ (imine) 2.029, $\mathrm{Ni}-\mathrm{N}$ (amine) $2 \cdot 159 \AA$.

The $\mathrm{C}-\mathrm{N}$ bond lengths and the bond angles around the N atoms can be divided into two distinct groups. Angles at N(1) and N(4) add up to 359.9 and $359 \cdot 8^{\circ}$, respectively, close to 360°, as expected for trigonal planar, while those at $\mathrm{N}(2)$ and $\mathrm{N}(3)$ are typical for tetrahedral bonding, mean $109 \cdot 1^{\circ}$ for $\mathrm{N}(2)$ and 108.4° for $\mathrm{N}(3)$. Both imine N atoms exhibit large distortions from ideal values in the angles $\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{C}(9)$ and $\mathrm{Co}(1)-\mathrm{N}(4)-\mathrm{C}(14)$ which are 112.7 (4) and $112.0(4)^{\circ}$, respectively. This can be attributed to the electronic repulsion of the $\mathrm{C}=\mathrm{N}$ double bond and to the participation of these atoms in the five-membered chelate rings. The angles $\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{C}(7)$ and $\mathrm{Co}(1)-\mathrm{N}(4)-\mathrm{C}(15)$ are concomitantly large at $126 \cdot 3(4)^{\circ}$.

The F atoms of the hexafluorophosphate counterion are disordered between two sets of atomic posi-
tions. The site occupancies refined to 0.65 (1) and 0.34 (1), and were then fixed at these values during the final cycle of refinement. The P-F lengths of the major orientation average $1.580 \AA$, some $0.03 \AA$ larger than has generally been found previously (Banbery \& Hamor, 1988).
The acetone molecule forms a weak hydrogen bond with one of the amine N atoms: $\mathrm{N}(2) \cdots \mathrm{O}(1 A)$ $=2 \cdot 995(8), \mathrm{H}(2 \mathrm{~N}) \cdots \mathrm{O}(1 A)=2.05 \AA$.

We thank Dr C. J. Jones and Professor J. A. McCleverty for suggesting this problem and Dr A. S. Rothin for materials. HJB thanks the SERC and Amersham International plc for the award of a CASE studentship.

References

Banbery, H. J. \& Hamor, T. A. (1988). Acta Cryst. C44, 1683-1684.
Cradwick, P. D., Cradwick, M. E., Dodson, G. G., Hall, D. \& Waters, T. N. (1972). Acta Cryst. B28, 45-49.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO78. Program for plotting molecular and crystal structures. Report Cambridge Crystallographic Files (1981), Manchester Computing Centre, Manchester, England.
Rothin, A. S., Banbery, H. J., Berry, F. J., Hamor, T. A., Jones, C. J. \& McCleverty, J. A. (1989). Polyhedron, 3, 491-504.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sinn, E., Sim, G., Dose, E. V., Tweedle, M. F. \& Wilson, L. J. (1978). J. Am. Chem. Soc. 100, 3375-3390.

Structures of the Antiferrodistortive Layer Perovskites Bis(phenethylammonium) Tetrahalocuprate(II), Halo $=\mathrm{Cl}^{-}, \mathrm{Br}^{-}$

By Roger D. Willett
Chemical Physics Program, Washington State University, Pullman, WA 99164-4630, USA

(Received 10 January 1989; accepted 21 June 1989)

Abstract

Bis(phenethylammonium) tetrachlorocuprate(II), $2 \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}^{+} . \mathrm{CuCl}_{4}^{2-}, M_{r}=449 \cdot 8$, orthorhombic, Pcab, $\quad a=7.328$ (1), $\quad b=7.295$ (1), $\quad c=$ 38.618 (5) $\AA, \quad V=2064.7$ (6) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.47 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \mu=63.6 \mathrm{~cm}^{-1}$, $F(000)=924, T=295 \mathrm{~K}$, final $R=0.068$ for 1198 observed unique reflections. Bis (phenethylammonium) tetrabromocuprate(II), $2 \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}^{+} . \mathrm{CuBr}_{4}^{2-}$, $M_{r}=627 \cdot 5$, orthorhombic, Pcab, $a=7 \cdot 654$ (4), $b=$

Abstract

7.756 (4),$c=38.042$ (18) $\AA, V=2258(1) \AA^{3}, Z=4$, $D_{x}=1.85 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu=$ $97.5 \mathrm{~cm}^{-1}, F(000)=1212, T=295 \mathrm{~K}$, final $R=0.067$ for 1207 observed unique reflections. Both salts contain layers of corner-shared tetragonally elongated octahedra sandwiched between layers of the organic cations. Each copper(II) ion forms four short $\mathrm{Cu}-X\left(X=\mathrm{Cl}^{-}, \mathrm{Br}^{-}\right)$bonds in a planar arrangement. Two longer, semi-coordinate $\mathrm{Cu}-X$ bonds

[^0]: * Contribution from the Crystallography Unit, Universities of Aston and Birmingham.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52404 (21 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

